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Lanchester resurgent?
Themathematics of terrorism risk

Michael R. Powers
Temple University, Swarthmore, Pennsylvania, USA

Abstract

Purpose – The purpose of this editorial is to consider whether or not the classical “Lanchester
equations” of military combat are useful for modeling the financial risks associated with contemporary
terrorist attacks.

Design/methodology/approach – The paper begins by describing Lanchester’s original model and
its realm of applicability; then identifies shortcomings of the original equations, which, having been
aggravated by differences between classical military combat and modern terrorist engagements,
impede the application of the Lanchester paradigm in today’s world. Finally, the paper explores
whether or not these obstacles can be overcome by appropriate extensions of Lanchester’s
mathematical theory.

Findings – The principal result is that the Lanchester equations may be extended in a very natural
way to include stochastic elements, difficult-to-quantify components, and various force asymmetries,
thereby enabling the modeling of engagements between conventional and terrorist forces. Specifically,
a family of diffusion processes is proposed to capture the terrorists’ progress toward destroying a
target, and provide a method for explicitly calculating the probability of target destruction.

Originality/value – The editorial seeks to model a category of catastrophe risk – terrorist attacks –
for which the current mathematical literature (both military and financial) is somewhat limited.

Keywords – Terrorism, Risk assessment, Forecasting, Diffusion, Mathematical modelling,
Differential equations

Paper type Viewpoint

Following the terrorist attacks of September 11, 2001, the US Congress passed the
Terrorism Risk Insurance Act (TRIA) of 2002 to “establish a temporary Federal
program that provides for a transparent system of shared public and private
compensation for insured losses resulting from acts of terrorism[1].” In return for
requiring US property-liability insurers to include terrorism coverage in certain critical
lines of business, the legislation supplemented private reinsurance coverage for
terrorism-related losses through the end of 2005. Two subsequent extensions of
TRIA[2] have carved out a far from “temporary” role for the US Federal Government in
financing terrorism risk.

As observed in a previous editorial (Powers, 2005), a necessary condition for private
insurers and reinsurers to remain in the terrorism-risk market is the industry’s
confidence that total losses can be forecast with sufficient accuracy. In the present
editorial, I will consider the potential use of the classical “Lanchester equations” of
military combat in forecasting the frequency of successful terrorist attacks.

The current issue and full text archive of this journal is available at

www.emeraldinsight.com/1526-5943.htm

The author is indebted to Bruce I. Gudmundsson, both for introducing him to the Lanchester
equations and for explaining their historical context and applicability.
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Ad hoc models
Writing in a prior issue of this journal, Major (2002) proposed that the conditional
probability of destruction of a target i, given that target i is selected for attack by
terrorists, be expressed as:

pM ¼ exp 2
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 !
; ð1Þ

where Ai denotes the size of the forces assigned by the terrorists to attack i, Di denotes
the size of the forces assigned by government (and possibility private security) to
defend i, and Vi denotes the value of i as a target (which is assumed to have a
square-root relationship to the target’s physical presence). In this formulation, the first
factor on the right-hand side of equation (1) represents the probability that the
terrorists avoid detection prior to their attack (derived from a simple search model),
and the second factor represents the probability that the terrorists are then successful
in destroying the target (derived from a dose-response model).

Powers and Shen (2006) replaced the above formula with:
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where the parameters s; c . 0 allow the relative impacts of Ai, Di, and Vi to manifest
decreasing ðs; c , 1Þ, constant ðs; c ¼ 1Þ, or increasing ðs; c . 1Þ returns to scale. The
biggest conceptual difference between equations (1) and (2) is the substitution of a
power of Di for a power of Vi in the denominator of the second factor (representing the
terrorists’ probability of success in destroying the target once they have avoided
detection). Essentially, Powers and Shen (2006) viewed the second factor as the
probability that the terrorists prevail in their combat engagement with the forces
defending the target, and used a heuristic argument based upon a classical gambler’s
ruin model to justify its functional form (which consequently is decreasing in Di).

Somewhat curiously, both equations (1) and (2) possess the property that the
right-hand side approaches zero as Ai !1[3]. What this means is that as the
terrorists’ forces increase in magnitude, the disadvantage of size in terms of avoiding
detection eventually outweighs the benefit of size in combat. While this implication
may be realistic in certain scenarios, it is easily challenged. For example, the September
11 attacks suggest a small role for detection in even the boldest of attacks when the
target is inadequately defended.

To provide a more rigorous framework for the study of terrorism combat – and in
particular, to attempt to resolve the relative effects of physical detection and combat
performance – we consider whether or not this form of contemporary conflict is
amenable to the mathematical models of conventional military combat. Specifically, we
explore whether the Lanchester equations of conventional combat may be extended
appropriately to capture the various characteristics of modern terrorism.

The Lanchester equations
By far the most widely studied mathematical model of military combat is that
proposed by Lanchester (1916), which may be described by a system of differential
equations of the form:
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dA

dt
¼ 2k1A

a1D d1 ; ð3Þ

dD

dt
¼ 2k2A

a2D d2 ; ð4Þ

where A ¼ AðtÞ and D ¼ DðtÞ denote, respectively, the sizes of the attackers’ and
defenders’ forces at time t $ 0; k1, k2 are positive real-valued parameters denoting,
respectively, the defenders’ and attackers’ effective destruction rates; and a1, a2 and d1,
d2 are real-valued parameters reflecting the fundamental nature of the combat under
study. In his original formulation, Lanchester (1916) considered two cases – one for
“ancient” warfare, in which a1 ¼ 1; d1 ¼ 1; a2 ¼ 1; d2 ¼ 1, and one for “modern”
warfare, in which a1 ¼ 0; d1 ¼ 1; a2 ¼ 1; d2 ¼ 0.

The rationale for the former model arises from hand-to-hand combat, in which the
number of potential micro-engagements is given by the product of the two armies’
forces, so that the rate of attrition of each side’s forces at any time t is proportional to
this product. Solving the system of differential equations under this assumption yields
the condition:

k2

k1
. ½,�

Dð0Þ

Að0Þ
; ð5Þ

for the attackers (defenders) to win. The latter model is intended to reflect a type of
combat in which the two armies fire upon each other from a distance, so that the rate of
attrition of each side’s forces at any time t is simply proportional to the size of the
opposing army’s forces. Under this assumption, the system of differential equations
yields the condition:

k2

k1
. ½,�

Dð0Þ

Að0Þ

� �2

; ð6Þ

for the attackers (defenders) to win. The principal conclusion to be drawn from
Lanchester’s original analysis is that the ratio of the opposing armies’ initial forces (i.e.
Dð0Þ=Að0Þ) plays a greater role in “modern” combat, where it is raised to the second
power in condition (6), than in “ancient” combat, where it is raised to only the first
power in condition (5).

Although the Lanchester equations have enjoyed some success in military
applications – especially during World War II, when they were used extensively by
the Allies to allocate reinforcements and logistical support – they possess several
shortcomings of both theoretical and practical significance. These include:

. the assumption of homogeneous forces (i.e. both A(t) and D(t) change
continuously over time, so that the loss of a tank cannot be distinguished
from the loss of a soldier);

. the purely deterministic formulation (i.e. the army with greater forces is certain
to win);

. the absence of certain difficult-to-quantify components (specifically, terrain,
weather, and morale); and

. the failure to recognize certain asymmetries between armies (specifically,
differences in objectives, information, and weaponry).
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As military conflicts moved from the more conventional “modern” warfare of World
Wars I and II to the more limited but protracted engagements of the Cold War and the
War on Terror, the significance of the above drawbacks became more pronounced, and
the Lanchester paradigm lost favor among military analysts. Despite a limited stream
of continuing research, Lanchester theory largely has been replaced by simulation and
role-playing techniques over the past few decades.

Terrorism combat
So why attempt a Lanchester approach to terrorism – where the nature of the conflict
is far from deterministic, where unusual terrain plays a major role, and where the
asymmetries of objectives (instilling fear vs maintaining stability), information
(surprise attacks vs constant vigilance), and weaponry (suicide bombers, airplanes, etc.
vs a more conventional arsenal) are so extreme?

The answer is quite simple. The principal advantage offered by the Lanchester
approach – which can never be achieved by simulation or role-playing – is analytical
tractability. Thus, given that the motivation for our discussion is to compute the
conditional probability of destruction of a target i, given that target i selected for
attack, the ability to compute this probability explicitly is worth an attempt at
overcoming the many serious obstacles discussed above. Somewhat surprisingly, most
of these shortcomings can be addressed in a reasonably straightforward manner.

We begin by replacing equations (3) and (4) by the system of stochastic differential
equations[4]:

dA ¼ 2
k1

vq
ADdt þ s1dZ 1; ð7Þ

dD ¼ 2k2Adt þ s2dZ 2; ð8Þ

where dZ1, dZ2 are standard Brownian motions; s1 ¼ s1ðA;D; tÞ . 0; s2 ¼ s2ðA; D;
tÞ . 0 are the associated infinitesimal standard deviations; v denotes the
three-dimensional volume of the target under attack; and q denotes a
power-transformation parameter used to recognize the appropriate domain of
combat (e.g. q ¼ 1=3 if a building can be attacked through only its ground-level
perimeter, q ¼ 2=3 if a building can be attacked anywhere along its surface, as by a
fuel-filled airplane, and q ¼ 1 if a bomb can be planted anywhere within a building).

Although any formulation with continuous values for A and D will model
heterogeneous forces only approximately, the above system possesses several
noteworthy improvements over the original Lanchester model. First, it introduces an
explicit stochastic structure into an otherwise deterministic framework. Second, it
captures the role of terrain to some extent through the parameter q, and is largely
unaffected by changes in weather and morale since terrorist attacks are generally short
in duration. Third, it captures the asymmetric information associated with a surprise
attack on the target through the functional forms of the infinitesimal drifts on the
right-hand sides of equations (7) and (8). This is because:

. the rate of attrition of the attackers’ forces at any time t is proportional to
both the size of the defenders’ forces – since all of the defenders’ forces are
available to fire on the enemy – as well as the size of the attackers’ forces divided
by v q – since the defenders do not know the attackers’ actual physical locations
within the combat domain; and
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. the rate of attrition of the defenders’ forces at any time t is proportional to only
the size of the attackers’ forces – since the attackers know the defenders’
physical locations.

Finally, it is able to recognize asymmetries in weaponry merely by appropriately
adjusting the destruction-rate parameters k1 and k2 to have the correct units.

These enhancements leave one problem unaddressed – the failure to recognize
asymmetries in objectives. However, this remaining issue is easily resolved in finding
the probability of a successful terrorist attack, where one must specify a definition of
“victory” for the attackers.

Essentially, we seek a mathematical expression for the probability that the process
described by equations (7) and (8) reaches the attackers’ “victory” state, ½A ðAÞ;D ðAÞ�,
before it reaches the defenders’ “victory” state, ½A ðDÞ;D ðDÞ�. The various possible
definitions of ½A ðAÞ;D ðAÞ� and ½A ðDÞ;D ðDÞ� allow for a wide variety of objectives,
including those that are explicitly asymmetric. For example, a naı̈ve symmetric model
based solely upon exhausting the enemy’s forces would set ½A ðAÞ;D ðAÞ� ¼ ½A; 0� and
½A ðDÞ;D ðDÞ� ¼ ½0;D�, for arbitrary positive values of A and D, respectively; whereas a
more sophisticated asymmetric model might set ½A ðAÞ;D ðAÞ� ¼ ½A;D

*
� and

½A ðDÞ;D ðDÞ� ¼ ½0;D�, for some D
*
. 0 that is sufficiently humiliating for the defenders.

To compute the attackers’ probability of victory directly from equations (7) and (8)
is a formidable task. However, employing a method proposed by Powers (1995) for
monitoring insurance-company solvency, we can transform the bivariate system of
equations (7) and (8) into a univariate system by identifying a function U ¼ gðA;DÞ
such that:

dU ¼
›gðA;DÞ

›A
dAþ

›gðA;DÞ

›D
dD ¼ 2

›gðA;DÞ

›A
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AD þ
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›D
k2A

� �
dt ¼ Udt:

Equations (7) and (8) then can be replaced with:

dU ¼ Udt þ sdZ ; ð9Þ

where dZ is a standard Brownian motion and s ¼ sðU ; tÞ . 0 is the associated
infinitesimal standard deviation[5].

After several standard manipulations, we find that:

U ¼ gðA;DÞ ¼ exp 2
ðvq=k1Þ

ffiffiffiffiffiffiffiffiffiffiffiffi
ð2=k2Þ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðvqA=k1Þ2 ðD 2=2k2Þ
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� �

s ! !
:

Setting ½A ðAÞ;D ðAÞ� ¼ ½A; 0� to identify the attackers’ victory with total target
destruction, and letting s ¼ sðU ; tÞ be a positive constant, it then follows that:

p¼ Pr{Target destruction} ¼ Pr{Attackers win} ¼
Fðð

ffiffiffi
2

p
=sÞU ð0ÞÞ2 ð1=2Þ

Fð
ffiffiffi
2

p
=sÞ2 ð1=2Þ

; ð10Þ

where U ð0Þ ¼ gðAð0Þ;Dð0ÞÞ and FðÞ is the cumulative distribution function of the
standard normal distribution.
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Conclusions
A close examination of equation (10) yields the following results[6]:

. If:

Dð0Þ $

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2vqk2Að0Þ

k1

s
;

then p ¼ 0: for a terrorist attack of any fixed size, a sufficiently large defensive
force can prevent target destruction with certainty.

. If:

Dð0Þ ,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2vqk2Að0Þ

k1

s
;

then:

›p

›Dð0Þ
, 0;

Dð0Þ!
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2v qk2Að0Þ=k1

plim p ¼ 0; and
Dð0Þ!0

lim p ¼ 1

as the size of the initial defensive forces increases, the chance of target
destruction decreases, and eventually is eliminated; as the size of the initial
defensive forces shrinks to zero, target destruction is assured.

. If:

D 0ð Þ ,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2vqk2A 0ð Þ

k1

s
;

then:

›p

›Að0Þ
. 0;

Að0Þ!1
lim p ¼ 1; and

Að0Þ!k1½Dð0Þ�
2=2v qk2

lim p ¼ 0;

as the size of the initial terrorist forces increases, the chance of target destruction
increases, eventually achieving certainty; as the size of the initial terrorist forces
shrinks to its lower bound, the chance of target destruction is eliminated.

. If:

Dð0Þ ,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2vqk2Að0Þ

k1

s
;

then:

›p

›s
, 0;

s!1
lim p . 0; and

s!0
lim p ¼ 1;

as the combat uncertainty of a terrorist attack increases, the chance of target
destruction decreases, but cannot be eliminated; however, as the combat
uncertainty shrinks to zero, target destruction is assured.
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. If:

Dð0Þ ,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2vqk2Að0Þ

k1

s
;

then:
›p

›vq
. 0;

v q!1
lim p , 1; and

v q!k1½Dð0Þ�
2=2k2Að0Þ

lim p ¼ 0;

as the physical domain of a terrorist attack expands, the chance of target
destruction increases, but cannot achieve certainty; however, as the physical
domain shrinks to its lower bound, the chance of target destruction is eliminated.

Notes

1. See the TRIA of 2002.

2. The Terrorism Risk and Insurance Extension Act (TRIEA) of 2005 extended most of TRIA’s
provisions an additional two years, and TRIEA of 2007 subsequently extended them a
further seven years.

3. The author is grateful to Waleed Al Mannai and Ted Lewis for raising this issue.

4. This is similar to the formulation of Perla and Lehoczky (1977).

5. Note that equation (9) is not mathematically identical to the systems (7) and (8) because the
stochastic element, sdZ , is not derived from s1dZ 1 and s2dZ 2. Nevertheless, the assumption
of a Brownian motion in equation (9) is, ceteris paribus, just as valid as the Brownian-motion
assumptions in equations (7) and (8).

6. Importantly, these results are borne out for alternative functional forms of the infinitesimal
standard deviation; specifically, sðU ; tÞ ¼ s

ffiffiffiffi
U

p
and sðU ; tÞ ¼ sU .
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